\qquad not shown Unless otherwise stated, you do not need to find the radius of convergence
(1) Find the interval of convergence for each of the following. Explain. (8 points each)

$$
\begin{aligned}
& \text { (a) } \sum_{n=n}^{\infty} \frac{2^{n}}{n!} x^{n} \\
& \lim _{n \rightarrow \infty}\left|\frac{a_{n-1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{2^{n+1} x^{n+1}}{(n+1)!} \cdot \frac{n!}{2^{n} x^{n}}\right|=\lim _{n \rightarrow \infty} \frac{2}{n+1}|x|=0 \\
& \text { fo- } 21(x
\end{aligned}
$$

$$
(-\infty, \infty)
$$

(b) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n} \sqrt{n}}(x-1)^{n}$
$>$ Ratio Test

$$
\begin{aligned}
& \text { Ratio Test } \\
& \text { L }=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}(x-1)^{n+1}}{2^{n+1} \sqrt[1]{n+1}} \cdot \frac{2^{n} \sqrt{n}}{(-1)^{n}(x-1)^{n}} n\right| \\
& \\
& =\lim _{n \rightarrow \infty} \frac{|x-1|}{2} \frac{\sqrt{n}}{\sqrt{n+1}}=\frac{|x-1|}{2} \lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\sqrt{n+1}}=\frac{|x-1|}{2}
\end{aligned}
$$

Series converges when $\frac{|x-1|}{2}<1 \rightarrow|x-1|<2$ When $\frac{|x-1|}{2}=1$, Ratio test is inconclusive $\Rightarrow-2<x-1<2$ and we must check ondodints sepastely $\left.\quad x=3 \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n} \sqrt{n}} 3-1\right)^{n}=\sum \frac{(-1)^{n}}{\sqrt{n}} \operatorname{con} v$

So converges $\{-2\}$

$$
\begin{aligned}
& \text { (c) } \sum_{n=1}^{\infty}(3 n)!(x+2)^{n} \quad \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n} \sqrt{n}}(t-1)^{n}=\sum \frac{\left.1-1)^{n n}(-2)^{n}\right)^{n}}{2^{n} \sqrt{n}}=\sum \frac{1}{\sqrt{n}} d i v_{0} \\
& L=\lim _{n \rightarrow \infty}\left|\frac{a_{n-1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\left(3(n+1)!(x+2)^{n+1}\right.}{(3 n)!(x+2)^{n}}\right| \text { Ans: }(-1,3] \\
& =\lim _{n \rightarrow \infty}|(3 n+3)(3 n+2)(3 n+1)(x+2)|=\infty \text { for all } x \text { bat }
\end{aligned}
$$

(2) Find the Maclaurin series for $\frac{1}{1+4 x}$ using any method and state the radius of convergence.
directly on use geometric cements)
directly or use geometric series

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \quad|x|<1
$$

sub. $(-4 x)$ for x

$$
\frac{1}{1+4 x}=\sum_{n=0}^{\infty}(-4 x)^{n} \quad|-4 x|<1
$$

$$
\frac{1}{1+4 x}=\sum_{n=0}^{\infty}(-4)^{n} x^{n}
$$

$$
|x|<\frac{1}{4}
$$

$$
R=\frac{1}{4}
$$

(3) Match the parameterizations (a)-(d) with their plots shown and draw an arrow indicating direction of increasing t.
(a) $\left\{\begin{array}{l}x=\cos t \\ y=\sin 4 t\end{array}\right.$ (b) $\left\{\begin{array}{l}x=t \\ y=\sqrt{t}\end{array}-\boldsymbol{B}\right.$ (c) $\left\{\begin{array}{l}x=\cos t \\ y=4 \sin t\end{array}-\right.$ (d) $\left\{\begin{array}{l}x=\cos ^{2} t \\ y=\cos t\end{array}\right.$ (
(a) $\left\{\begin{array}{l}x=\cos t \\ y=\sin 4 t\end{array}\right.$ (b) $\left\{\begin{array}{l}x=t \\ y=\sqrt{t}\end{array}-\right.$ (c) $\left\{\begin{array}{l}x=\cos t \\ y=4 \sin t\end{array}-\right.$ (d) $\left\{\begin{array}{l}x=\cos ^{2} t \\ y=\cos t\end{array}\right.$ (
(8 points)

A

B

C
D
(4) Find the Taylor series for $f(x)=\frac{4}{x^{3}}$ centered at $\mathrm{a}=3$. Express in Summation Notation. No need to find radius of convergence.
(B9points)

notice, this is not quite a factorial. It needs a 2.

$$
\frac{5 \cdot 4 \cdot 3 \cdot 2}{2}=\frac{5!}{2}
$$

$$
f^{(n)}(x)=\frac{(-1)^{n} 4(n+2)!}{x^{n+3}-2}
$$

$f^{(n)}(3)=\frac{(-1)^{n} 4(n+2)!}{3^{n+3} \cdot 2} \quad$ Be sure to put the 3 in for x, otherwise you'd

$$
f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}+(n+2)!}{3^{n+3} \cdot 2 n!}(x-3)^{n}
$$ have an x here, which is nit a powerseries cart polynomial form)

$$
=\sum_{n=0}^{\infty} \frac{(-1)^{n} 2(n+2)(n+1)}{3^{3 n+3}}(x-3)^{n}
$$

(5)
(124points)
(a) Convert from polar to rectangular coordinates $(-2, \pi):-(2,0)$

$$
\begin{aligned}
& x=r \cos \theta=-2 \cos \pi \\
& y=r \sin \theta=-2 \sin \pi
\end{aligned}
$$

(can check 1 if reasonable)
(b) Convert from rectangular to polar coordinates $(-3,-3):\left(3 \sqrt{2}, \frac{5 \pi}{4}\right)$

$$
\begin{aligned}
& r^{2}=x^{2}+y^{2}=18 \quad r=3 \sqrt{2} \\
& \tan \theta=\frac{-3}{-3}=1, Q 1 n \Phi 3 \quad \theta=\frac{5 \pi}{4}
\end{aligned}
$$

* point in Q3

(c) Graph the polar function: $r=3-3 \sin \theta$ (You can use either grid)

(6) Find a_{5}, the fifth term of the series (no need to simplify).

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{n!}{1 \cdot 5 \cdot 9 \cdot \cdots \cdot(4 n-3)} x^{n} \quad n=5 \Rightarrow 4 n-3 & =20-3 \text { (3 points) } \\
& =17
\end{aligned}
$$

$$
a_{5}=\frac{5!}{1 \cdot 5 \cdot 9 \cdot 13 \cdot 12} x^{5}
$$

(7)
(21 points)
(a) Use the Maclaurin series for e^{x} to find the Maclaurin Series for $f(x)=x^{2} e^{-x^{2}}$

Easiest to useknowin series

$$
\begin{aligned}
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}=\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
& \text { subst. }-x^{2} \text { for } x=\frac{e^{-x^{2}}}{2!}=1-x^{2}+\frac{x^{4}}{3!}+\frac{x^{8}}{4!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n} \\
& \text { mut } x^{2} \\
& x^{2} e^{-x^{2}}=x^{2}-x^{4}+\frac{x^{6}}{2!}-\frac{x^{8}}{3!}+\frac{x^{10}}{4!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n+2}
\end{aligned}
$$

(b) Use series to compute $\int_{0}^{1 / 3} x^{2} e^{-x^{2}} d x$ with lerrorl <0.001

Show how you determined how many terms were necessary

$$
\begin{aligned}
& \int_{0}^{1 / 3} x^{2} e^{-x^{2}} d x=\int_{0}^{1 / 3}\left(x^{2}-x^{4}+\frac{x^{6}}{2!}-\frac{x^{8}}{3!}+\frac{x^{10}}{4!}+\right) d x=\int_{0}^{113} \sum_{0}^{11} \frac{(-1)^{n} x^{2 n+2}}{n!} d x \\
& \left.=\frac{1}{3} x^{3}-\frac{x^{5}}{5}+\frac{x^{7}}{14}-\frac{x^{9}}{54}+\frac{x^{11}}{264}=\cdots 0\right]_{0}^{1 / 3} \\
& \left.=\frac{1}{81}\right]^{*}-\frac{1}{\frac{1215}{f i r s t e r}}+\cdots \\
& \text { Firstterma.001 } \\
& \approx \frac{1}{8 l}=.0123
\end{aligned}
$$

*Note: You include all terms that precede the first term <.001 so you only need one term here.
(8) Use an integral to find the length of the curve $\begin{aligned} & f(x)=(x-1)^{3 / 2} ; 0 \leq x \leq 2 \\ & 1 \leq x \leq 5\end{aligned}$

$$
\begin{aligned}
L & =\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x \\
& =\int_{1}^{5} \sqrt{\left.11(x-1)^{1 / 2}(x-1)^{1 / 2}\right)^{2}} d x \\
& =\int_{1}^{5} \sqrt{1+\frac{9}{4}(x-7)} d x \\
& =\int_{1}^{5} \sqrt{\frac{4+9(x-1)}{4}} d x \\
& =\frac{1}{2} \int_{1}^{5} \sqrt{9 x-5} d x \quad \text { let } u=9 x-5 \\
& =\frac{1}{18} \int_{4}^{40} u^{1 / 2} d u=9 d x \\
& \left.=\frac{1}{18} \frac{2}{3} u^{3 / 2}\right]_{4}^{40} \\
& =\frac{1}{27}\left(40^{3 / 2}-4^{3 / 2}\right) \\
& =\frac{1}{27} \cdot 4^{3 / 2}\left(10^{3 / 2}-1\right) \\
& =\frac{8}{27}\left(10^{3 / 2}-1\right)
\end{aligned}
$$

